추천 제품
생물학적 소스
mouse
Quality Level
항체 형태
purified antibody
항체 생산 유형
primary antibodies
클론
G10, monoclonal
종 반응성
rodent, mouse, rat
종 반응성(상동성에 의해 예측)
human
제조업체/상표
Chemicon®
기술
immunohistochemistry: suitable
western blot: suitable
동형
IgG1
NCBI 수납 번호
UniProt 수납 번호
배송 상태
wet ice
타겟 번역 후 변형
unmodified
유전자 정보
human ... RELN(5649)
일반 설명
The highly layered structure of the cerebral cortex is established through the pattern of neuronal cell migrations. The first step is the creation of the primordial layer, the preplate, consisting of radial glial cells and the earliest generated neurons. Among these neurons are the Cajal-Retzius neurons. In the next step, the preplate splits into a superficial (marginal) zone, where the Cajal-Retzius neurons reside, and a deep subplate wherein the neurons form. Neurons migrating from the subplate form the cortical plate. This migration takes place on the radial glial fibers.
The reeler mutant in mouse displays an abnormal pattern of cell migration throughout the cerebral and cerebellar cortices. The preplate forms normally, and the neurons differentiate at the correct times in the ventricular zone. However, instead of forming the normal "inside-out" arrangement of neurons in the cortical plate, the older neurons are found furthest from the ventricular zone, while the younger neurons do not migrate far at all. The reeler cerebral cortex is inverted from that of the wild type mouse.
The defect of the reeler mice appears to be in the production of an extracellular matrix protein by the Cajal-Retzius cells (D′Arcangelo et al., 1995, Nature 374:719-723.; Ogawa et al., 1995 Neuron 14:899-912.) This 388kDa protein is made by wild-type mice but not by the reeler mutants. It is thought that this Reelin protein is crucial for positioning the migrating neuron within the cortical plate (Figure 1). In the absence of Reelin, the migrating neuron would be "lost," and the cortical plate would be abnormal. We do not yet know the mechanisms by which Reelin informs the cells as to their position, how the cell responds to Reelin, and why the absence of reelin should give an "inverted" plate. However, the identification of the protein encoded by the reeler gene should allow us to begin these studies.
The reeler mutant in mouse displays an abnormal pattern of cell migration throughout the cerebral and cerebellar cortices. The preplate forms normally, and the neurons differentiate at the correct times in the ventricular zone. However, instead of forming the normal "inside-out" arrangement of neurons in the cortical plate, the older neurons are found furthest from the ventricular zone, while the younger neurons do not migrate far at all. The reeler cerebral cortex is inverted from that of the wild type mouse.
The defect of the reeler mice appears to be in the production of an extracellular matrix protein by the Cajal-Retzius cells (D′Arcangelo et al., 1995, Nature 374:719-723.; Ogawa et al., 1995 Neuron 14:899-912.) This 388kDa protein is made by wild-type mice but not by the reeler mutants. It is thought that this Reelin protein is crucial for positioning the migrating neuron within the cortical plate (Figure 1). In the absence of Reelin, the migrating neuron would be "lost," and the cortical plate would be abnormal. We do not yet know the mechanisms by which Reelin informs the cells as to their position, how the cell responds to Reelin, and why the absence of reelin should give an "inverted" plate. However, the identification of the protein encoded by the reeler gene should allow us to begin these studies.
특이성
Reelin
The antibody shows weak reactivity to reelin from other species.
면역원
Epitope: a.a. 164-496 mreelin
Recombinant reelin amino acids 164-496
애플리케이션
Detect Reelin using this Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10 validated for use in IH & WB.
Immunohistochemistry: A previous lot of this antibody was used in IH.
Optimal working dilutions must be determined by the end user.
Optimal working dilutions must be determined by the end user.
Research Category
Neuroscience
Neuroscience
Research Sub Category
Growth Cones & Axon Guidance
Growth Cones & Axon Guidance
품질
Evaluated by Western Blot on Rat brain lysates.
Western Blotting Analysis:
1:500 dilution of this antibody detected reelin on 10 μg of Rat brain lysates.
Western Blotting Analysis:
1:500 dilution of this antibody detected reelin on 10 μg of Rat brain lysates.
표적 설명
~388 kDa
물리적 형태
Format: Purified
Mouse monoclonal IgG1 in buffer containing 0.02 M Phosphate buffer with 0.25 M NaCl and 0.1% sodium azide.
Protein A purified
저장 및 안정성
Stable for 1 year at 2-8ºC from date of receipt.
분석 메모
Control
Mouse liver, kidney, rat brain lysate
Mouse liver, kidney, rat brain lysate
기타 정보
Concentration: Please refer to the Certificate of Analysis for the lot-specific concentration.
법적 정보
CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany
면책조항
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
적합한 제품을 찾을 수 없으신가요?
당사의 제품 선택기 도구.을(를) 시도해 보세요.
Storage Class Code
10 - Combustible liquids
WGK
WGK 2
시험 성적서(COA)
제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.
Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.
Huaiyu Hu, Yuan Yang, Amber Eade, Yufang Xiong, Yue Qi
The Journal of Comparative Neurology null
Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development.
Janusonis, S; Gluncic, V; Rakic, P
The Journal of Neuroscience null
Origins and migratory routes of murine Cajal-Retzius cells.
Fernando Garcia-Moreno,Laura Lopez-Mascaraque,Juan A De Carlos
The Journal of Comparative Neurology null
Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain.
Rita Marie Cowell,Kathryn Rose Blake,James W Russell
The Journal of Comparative Neurology null
Gülşen Sürmeli et al.
Neuron, 88(5), 1040-1053 (2015-11-27)
Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.