콘텐츠로 건너뛰기
Merck
모든 사진(2)

주요 문서

310069

Sigma-Aldrich

Iron(II,III) oxide

powder, <5 μm, 95%

동의어(들):

Ferrosoferric oxide, Iron oxide black, Magnetite

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
Fe3O4
CAS Number:
Molecular Weight:
231.53
EC Number:
MDL number:
UNSPSC 코드:
12352303
PubChem Substance ID:
NACRES:
NA.23

Quality Level

분석

95%

양식

powder

입자 크기

<5 μm

mp

1538 °C (lit.)

density

4.8-5.1 g/mL at 25 °C (lit.)

응용 분야

battery manufacturing

SMILES string

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

관련 카테고리

일반 설명

Iron(II,III) oxide is an earth-abundant magneticoxide that has a high specific surface area, and good dispersion. The presenceof Fe3+ and Fe2+ with equal numbers in the Fe3O4structure provides higher light absorption and as a result superiorelectrocatalytic activities and high performance in solar cells compared toother iron oxides.

애플리케이션

Iron(II,III) oxide can be used as:
  • A starting material to synthesize Ca2Fe2O5 (srebrodolskite) microspheres via a single-stage flame spheroidisation (FS) process.
  • A catalyst for reverse water gas shift reactions(RWGS).

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

dust mask type N95 (US), Eyeshields, Gloves


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Miloch Marjanovic et al.
Water research, 140, 220-231 (2018-05-02)
In this work, solar disinfection (SODIS) was enhanced by moderate addition of Fe and sodium peroxydisulfate (PDS), under solar light. A systematic assessment of the activating factors was performed, firstly isolated, then in pairs and concluded in the combined Fe/heat/solar
Jens Baumgartner et al.
Nature materials, 12(4), 310-314 (2013-02-05)
The formation of crystalline materials from solution is usually described by the nucleation and growth theory, where atoms or molecules are assumed to assemble directly from solution. For numerous systems, the formation of the thermodynamically stable crystalline phase is additionally
Marina I Siponen et al.
Nature, 502(7473), 681-684 (2013-10-08)
Magnetotactic bacteria align along the Earth's magnetic field using an organelle called the magnetosome, a biomineralized magnetite (Fe(II)Fe(III)2O4) or greigite (Fe(II)Fe(III)2S4) crystal embedded in a lipid vesicle. Although the need for both iron(II) and iron(III) is clear, little is known
Maoquan Chu et al.
Biomaterials, 34(16), 4078-4088 (2013-03-08)
The photothermal effect of Fe3O4 magnetic nanoparticles is investigated for cancer therapy both in vitro and in vivo experiments. Heat is found to be rapidly generated by red and near-infrared (NIR) range laser irradiation of Fe3O4 nanoparticles with spherical, hexagonal and wire-like
Tsung-Ju Li et al.
Biomaterials, 34(32), 7873-7883 (2013-07-24)
We present an approach for synchronizing hyperthermia and thermal-responsive local drug release. The targeting probe has a magnetite nanocrystal (Fe₃O₄@PSMA) core and a polynucleotide shell that carries 5-fluorouracil (5-FU) and anti-human epidermal growth factor receptor 2 (anti-HER2) antibody for cancer

문서

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

An article concerning self-propagating reactions induced by mechanical alloying, presented by Sigma-Aldrich.com.

Magnetism and magnetic materials have been of scientific interest for over 1,000 years. More recently, fundamental investigations have focused on exploring the various types of magnetic materials and understanding the magnetic effects created by electric currents.

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.