Accéder au contenu
MilliporeSigma

Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties.

Biochimie (2015-03-10)
Winfried Elhardt, Raghuvaran Shanmugam, Tomasz P Jurkowski, Albert Jeltsch
RÉSUMÉ

Methylation of tRNA is an important post-transcriptional modification and aberrations in tRNA modification has been implicated in cancer. The DNMT2 protein methylates C38 of tRNA-Asp and it has a role in cellular physiology and stress response and its expression levels are altered in cancer tissues. Here we studied whether DNMT2 somatic mutations found in cancer tissues affect the activity of the enzyme. We have generated 13 DNMT2 variants and purified the corresponding proteins. All proteins were properly folded as determined by circular dichroism spectroscopy. We tested their RNA methylation activity using in vitro generated tRNA-Asp. One of the mutations (E63K) caused a twofold increase in activity, while two of them led to a strong (over fourfold) decrease in activity (G155S and L257V). Two additional mutant proteins were almost inactive (R371H and G155V). The strong effect of some of the somatic cancer mutations on DNMT2 activity suggests that these mutations have a functional role in tumorigenesis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
DL-Dithiothréitol solution, BioUltra, ~1 M in H2O
Supelco
DL-Dithiothréitol solution, 1 M in H2O
Sigma-Aldrich
Acide éthylènediaminetétraacétique solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
DNMT2 Active human, recombinant, expressed in baculovirus infected insect cells, ≥80% (SDS-PAGE)