

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Lectin-Agarose from *Triticum vulgaris*

Catalog Number **L1394** Storage Temperature 2–8 °C

Product Description

At low pH (below pH 3), this lectin is a monomer (17 kDa by sedimentation velocity). However, it is a dimer (35 kDa by sedimentation velocity) at neutral to slightly acidic pH.^{1,2} By SDS-PAGE analysis, the monomers migrate as 18 kDa proteins.³ Aggregation is also thought to occur in the presence of high concentrations of 2-mercaptoethanol.

The absorption maximum (λ_{max}) for the native dimer is 272 nm with a molar extinction coefficient (E^M) of 1.09×10^5 . The pl varies by lectin isoform (isolectins I, IIa, III - pl = 8.7 ± 0.3 and isolectin IIb - pl = 7.7 ± 0.3).

Lectins are proteins or glycoproteins of non-immune origin that agglutinate cells and/or precipitate complex carbohydrates. Lectins are capable of binding glycoproteins even in presence of various detergents. The agglutination activity of these highly specific carbohydrate-binding molecules is usually inhibited by a simple monosaccharide, but for some lectins, di, tri, and even polysaccharides are required.

Lectins are isolated from a wide variety of natural sources, including seeds, plant roots and bark, fungi, bacteria, seaweed and sponges, mollusks, fish eggs, body fluids of invertebrates and lower vertebrates, and from mammalian cell membranes. The precise physiological role of lectins in nature is still unknown, but they have proved to be very valuable in a wide variety of applications *in vitro*, including:

- 1. blood grouping and erythrocyte polyagglutination studies.
- 2. mitogenic stimulation of lymphocytes.
- lymphocyte subpopulation studies.
- 4. fractionation of cells and other particles.
- histochemical studies of normal and pathological conditions.

Sigma offers a range of lectins suitable for the above applications. Most Sigma lectins are highly purified by affinity chromatography, but some are offered as purified or partially purified lectins, suitable for specific applications.

Many of the lectins are available conjugated to (conjugation does not alter the specificity of the lectin):

- 1. fluorochromes (for detection by fluorimetry).
- enzymes (for enzyme-linked assays).
- 3. insoluble matrices (for use as affinity media).

Please refer to the table for general information on the most common lectins.

The inhibition of agglutination activity by di-N-acetyl-glucosamine (GlcNAc)₂ on this wheat germ lectin is reported to be $\sim\!600$ times greater than that of N-acetylglucosamine (GlcNAc). Tri-N-acetylglucosamine (GlcNAc)₃ is reported to be $\sim\!3,000$ times more inhibitory than GlcNAc.⁶

This product is immobilized on 4% agarose macrobeads. The use of this immobilized lectin in purifying membrane glycoproteins has been published.⁷ This product has also been used to bind the oocyte receptors responsible for mediating the effects of insulin and IGF-1. The solubilized *Xenopus* oocyte receptor was applied to the lectin, and elution was performed with N-acetylglucosamine.⁸

This resin should be regenerated using 0.5 M NaCl containing Mg^{2+} , Mn^{2+} , Ca^{2+} , and Zn^{2+} (1 mM each). The resin should be incubated for 30 minutes, washed with fresh regeneration solution, and then be re-equilibrated with running buffer. If the resin is to be stored, the solution should contain all of the above metal ions plus a bacteriostat.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

This agarose conjugate is a suspension in 0.9% NaCl and 15 mM sodium azide. It should be centrifuged for 30 seconds at $1,000 \times g$ to pellet. The supernatant should then be discarded and replaced by binding buffer dictated by the experiment.

		_	Specificity		Mitogenio
Lectin	MW (kDa)	Subunits	Blood Group	Sugar	<u>Activity</u>
Abrus precatorius			_		+
Agglutinin	134	4		gal	
Abrin A (toxin)	60	2		gal	
Abrin B (toxin)	63.8	2(αβ)		gal	
Agarius bisporus	58.5	_		β-gal(1→3)galNAc	
Anguilla anguilla	40	2	Н	α-L-Fuc	
Arachis hypogaea	120	4	Т	β-gal(1→3)galNAc	
Artocarpus integrifolia	42	4	Т	α-gal→OMe	+
Bandeiraea simplicifolia	444	4	A D	and analysis	
BS-I	114	4	A, B	α-gal, α-galNAc	
BS-I-A ₄	114	4	A	α-galNAc	
BS-I-B ₄	114	4	В	α-gal	
BS-II	113	4	acq, B, Tk, T	glcNAc	
Bauhinia purpurea	195	4	-	β-gal(1→3)galNAc	+
Caragana arborescens	60; 120 ^a	2/4	_	galNAc	
Cicer arietinum	44	2	_	fetuin	
Codium fragile	60	4	_	galNAc	
Concanavalin A	102	4	_	α-man, α-glc	+
Succinyl-Concanavalin A	51	2	_	α-man, α-glc	+ ^b
Cytisus scoparius	_	_	_	galNAc, gal	
Datura stramonium	86	2(αβ)	_	(glcNAc) ₂	
Dolichos biflorus	140	2 (αρ) 4	A_1	α-galNAc	
Erythrina corallodendron	60	2		α-gall \ Ac β-gal(1→4)glcNAc	
	56.8		_		+
Erythrina cristagalli		2(αβ)	- D II	β-gal(1→4)glcNAc	
Euonymus europaeus	166	4(αβ)	B, H	α-gal(1→3)gal	+
Galanthus nivalis	52	4	(h)	non-reduc. α-man	C
Glycine max	110	4	_	galNAc	+ ^c
Helix aspersa	79	_	Α	galNAc	
Helix pomatia	79	6	Α	galNAc	
Lathyrus odoratus	40-43	4(αβ)	_	α-man	+
ens culinaris	49	2	_	lpha-man	+
imulus polyphemus	400	18	_	NeuNAc	
Bacterial agglutinin	_	_		galNAc, glcNAc	
ycopersicon esculentum	71	_	_	(glcNAc) ₃	
Maackia amurensis	130	2(αβ)	0	sialic acid	+
Maclura pomifera	40-43	$2(\alpha\beta)$	_	α -gal, α -galNAc	
Momordica charantia	115-129	$4(\alpha\beta)$	_	gal, galNAc	
Naja mocambique mocambique		_	_	_	
Naja maja kaouthia	_	_	_	_	
Varcissus pseudonarcissus	26	2	(h)	α-D-man	
Perseau americana	20	۷	(11)	u-D-man	
	_	_	_	_	
Phaseolus coccineus	112	4	_	— 	
Phaseolus limensis	247(II) 124(III)	8 4	Α	galNAc	+
Phaseolus vulgaris	` '				
PHA-Ë	128	4	_	oligosaccharide	+
PHA-L	128	4	_	oligosaccharide	+
PHA-P	0	•		Jgoodoo.lallao	•
PHA-M					

			Specificity		
Lectin	MW (kDa)	Subunits	Blood Group	Sugar	Activity
Phytolacca americana	32	_	_	(glcNAc) ₃	+
Pisum sativum	49	4(αβ)	_	α-man	+
Pseudomonas aeruginosa PA-I	13-13.7	_	_	gal	+ ^c
Psophocarpus tetragonolobus	35	1	_	galNAc, gal	
Ptilota plumosa	65; 170	_	В	α-gal	
Ricinus communis				-	
Toxin, RCA ₆₀	60	2	_	galNAc, β-gal	
Toxin, RCA ₁₂₀	120	4	_	β-gal	
Sambucus nigra	140	4(αβ)	_	αNeuNAC(2→6)gal	+ ^c
				galNAc	
Solanum tuberosum	50; 100 ^a 1, 2		_	(glcNAc) ₃	
Sophora japonica	133	4	A, B	β-galNAc	
Tetragonolobus purpureas	120(A)	4	Н	lpha-L-fuc	
	58(BA)	2	Н	α -L-fuc	
	117(C)	4	Н	α -L-fuc	
Triticum vulgaris	36	2	_	(glcNAc) ₂ , NeuNAc	+
Ulex europaeus					
UEA I	68	_	Н	lpha-L-fuc	
UEA II	68	_	_	(glcNAc) ₂	
Vicia faba	50	4(αβ)	_	man, glc	+
Vicia sativa	40	4(αβ)	_	glc, man	+
Vicia villosa	139	4	$A_{1+}T_n$	galNAc	
A_4	134	4	A_1	galNAc	
B_4	143	4	T_n	galNAc	
Vigna radiata	160	4	_	lpha-gal	
Viscum album	115	4(αβ)	_	β-gal	
Wisteria floribunda	68	2	_	galNAc	

^a Concentration-dependent molecular weight

References

- Nagata, Y., and Burger, M. M., Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem., 249, 3116-3122 (1974).
- Harris, E. L., and Angal, S., Protein Purification Methods: A Practical Approach, Oxford University Press (New York, NY: 1989), p. 270.
- Rice, R. H., and Etzler, M.E., Subunit structure of wheat germ agglutinin. Biochem Biophys Res Commun., 59, 414 (1974).
- Kronis, K. A., and Carver, J. P., Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear magnetic resonance binding study. Biochemistry, 21, 3050-3057 (1982).
- Rueben, L., et al., Activities of lectins and their immobilized derivatives in detergent solutions.
 Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins.
 Biochemistry, 16, 1787-1794 (1977).
- Allen, A. K., et al., The purification, composition and specificity of wheat-germ agglutinin. Biochem. J., 131, 155-162 (1973).
- Lotan, R., et al., Activities of lectins and their immobilized derivatives in detergent solutions. Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins. Biochem., 16, 1787-1794 (1977).
- 8. Janicott, M., et al., The insulin-like growth factor 1 (IGF-1) receptor is responsible for mediating the effects of insulin, IGF-1, and IGF-2 in Xenopus laevis oocytes. J. Biol. Chem., **266**, 9382 (1991).

SBC,DS,IRB,MWM,JRC,NSB,SAG,MAM 08/18-1

b Non-agglutinating and mitogenic

^c Mitogenic for neuraminidase-treated lymphocytes