Skip to Content
MilliporeSigma
  • Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

Clinica chimica acta; international journal of clinical chemistry (2014-08-26)
Guan-yuan Chen, Huai-hsuan Chiu, Shu-wen Lin, Yufeng Jane Tseng, Sung-jeng Tsai, Ching-hua Kuo
ABSTRACT

As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner.

MATERIALS
Product Number
Brand
Product Description

Palmitic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Chloroform, suitable for HPLC
Supelco
Myristic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Palmitic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Palmitic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
SAFC
Sodium chloride solution, 5 M
USP
Palmitic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Hexacosanoic acid, ≥95% (capillary GC)
Sigma-Aldrich
Palmitoleic acid, ≥98.5% (GC), liquid
Sigma-Aldrich
Erucic acid, technical, ~90% (GC)
Supelco
Palmitoleic acid, analytical standard
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Hexacosanoic acid, technical, ≥90% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Erucic acid, analytical standard
Supelco
Behenic acid, analytical standard
Sigma-Aldrich
Myristic acid, Sigma Grade, ≥99%
Sigma-Aldrich
Arachidic acid, ≥99%
Sigma-Aldrich
Lignoceric acid, ≥99% (GC)
Sigma-Aldrich
Erucic acid, ≥99% (capillary GC)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis