Skip to Content
MilliporeSigma
  • Molecularly imprinted polymers for cleanup and selective extraction of curcuminoids in medicinal herbal extracts.

Molecularly imprinted polymers for cleanup and selective extraction of curcuminoids in medicinal herbal extracts.

Analytical and bioanalytical chemistry (2014-07-25)
Meyliana Wulandari, Javier L Urraca, Ana B Descalzo, M Bachri Amran, Maria C Moreno-Bondi
ABSTRACT

This paper describes the synthesis of novel molecularly imprinted polymers (MIPs), prepared by a noncovalent imprinting approach, for cleanup and preconcentration of curcumin (CUR) and bisdemethoxycurcumin (BDMC) from medicinal herbal extracts and further analysis by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). Two molecular mimics, a mixture of reduced BDMCs and 4-(4-hydroxyphenyl)-2-butanone (HPB), have been synthesized and applied as templates for MIP synthesis. The polymers were prepared using N-(2-aminoethyl) methacrylamide (EAMA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as the cross-linker (in a 1:5 molar ratio), and a mixture of acetonitrile/dimethylsulfoxide (90%, v/v) as porogen. MIPs prepared using a mixture of reduced BDMCs as template showed higher selectivity for CUR and BDMC than those obtained with HPB, with imprinting factors of 3.5 and 2.7 for CUR and BDMC, respectively, using H2O/acetonitrile (65:35, v/v) as mobile phase. The adsorption isotherms for CUR in the MIP and the nonimprinted polymer (NIP) were fitted to the Freundlich isotherm model, and the calculated average binding affinities for CUR were (17 ± 2) and (8 ± 1) mM(-1) for the MIP and the NIP, respectively. The polymers were packed into solid-phase extraction (SPE) cartridges, and the optimized molecularly imprinted solid-phase extraction (MISPE-HPLC) with fluorescence detection (FLD) method allowed the extraction of both curcuminoids from aqueous samples (50 mM NH4Ac, pH 8.8) followed by a selective washing with acetonitrile/NH4Ac, 50 mM at pH 8.8 (30:70%, v/v), and elution with 3 × 1 mL of MeOH. Good recoveries and precision ranging between 87 and 92%, with relative standard deviation (RSD) of <5.3% (n = 3), were obtained after the preconcentration of 10-mL solutions containing both CUR and BDMC at concentrations in the range of 0-500 μg L(-1). The optimized method has been applied to the analysis of both curcuminoids in medicinal herbal extracts.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
4-(4-Hydroxyphenyl)-2-butanone, natural, ≥98%, FCC, FG
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Resorcinol, ≥98%, FG
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
4-(4-Hydroxyphenyl)-2-butanone, 99%
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Ammonium acetate solution, 50 % (w/v)
Sigma-Aldrich
Ethanol, 94.8-95.8%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Resorcinol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Resorcinol, JIS special grade, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles