Skip to Content
MilliporeSigma
  • Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes.

Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes.

Stem cells (Dayton, Ohio) (2014-09-05)
Swati Naphade, Jay Sharma, Héloïse P Gaide Chevronnay, Michael A Shook, Brian A Yeagy, Celine J Rocca, Sarah N Ur, Athena J Lau, Pierre J Courtoy, Stephanie Cherqui
ABSTRACT

Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Glycerol, FCC, FG
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Anti-Laminin antibody produced in rabbit, 0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Supelco
Glycerol, analytical standard
Sigma-Aldrich
5-Sulfosalicylic acid dihydrate, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Osmium tetroxide solution, 4 wt. % in H2O
Sigma-Aldrich
Osmium tetroxide solution, 2.5 wt. % in tert-butanol
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
5-Sulfosalicylic acid dihydrate, purum p.a., ≥98.0% (T)
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Glycerin, meets USP testing specifications