Skip to Content
Merck
  • Dilution of semi-solid creams: influence of various production parameters on rheological properties and skin penetration.

Dilution of semi-solid creams: influence of various production parameters on rheological properties and skin penetration.

International journal of pharmaceutics (2014-12-06)
C Nagelreiter, E Kratochvilova, C Valenta
ABSTRACT

In order to customise treatment for patients, topical formulations are often diluted with drug-free cream bases to adjust the drug dose and thereby the formulations' activity to the patients' needs. However, the process of dilution influences properties of the formulations. Stability can be reduced as well as the microbial stability and most importantly, efficacy and skin penetration behaviour can be severely and unpredictably changed. The present study investigates the effects of production parameters on creams, namely incorporation of an API (active pharmaceutical ingredients) into an OW cream with prior mixing with propylene glycol or without and subsequent automated or manual dilution of the resulting creams with three different cream bases. Effects were measured by influence on microscopic appearance, measurement of chemical stability, skin penetration and rheological behaviour. suggest strong influence of the cream bases used for dilution of the formulations. Mixture of equal amounts of the employed OW and WO cream proved unfavourable due to inferior penetration behaviour and less appealing microscopic and macroscopic appearance. Prior mixing with PG was of negligible importance for the characteristics of the dilutions, however, the type of API and manner of dilution had an influence on the viscosity of the formulations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Erythromycin, for microbiological assay, European Pharmacopoeia (EP) Reference Standard
Fludrocortisone acetate, European Pharmacopoeia (EP) Reference Standard
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ammonium acetate solution, 7.5 M
Sigma-Aldrich
Fludrocortisone acetate, ≥98%
Sigma-Aldrich
Erythromycin, meets USP testing specifications
Sigma-Aldrich
Methanol, low water for titration
Sigma-Aldrich
Ammonium acetate solution, BioUltra, ~5 M in H2O
Sigma-Aldrich
Erythromycin standard solution, 1 mg/mL in H2O
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
Erythromycin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Erythromycin, potency: ≥850 μg per mg
Sigma-Aldrich
Diclofenac sodium salt