콘텐츠로 건너뛰기
Merck
  • New method for the determination of bile acids in human plasma by liquid-phase microextraction using liquid chromatography-ion-trap-time-of-flight mass spectrometry.

New method for the determination of bile acids in human plasma by liquid-phase microextraction using liquid chromatography-ion-trap-time-of-flight mass spectrometry.

Journal of chromatography. A (2015-02-28)
Maria José Nunes de Paiva, Helvécio Costa Menezes, Júlio César Cardoso da Silva, Rodrigo Ribeiro Resende, Zenilda de Lourdes Cardeal
초록

Bile acids (BAs) are derived from cholesterol and produced in the liver. The most abundant bile acids in humans are usually conjugated with glycine and taurine and are divided into primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BAs like deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA). The differences amongst individual bile acids (BAs) are significant in order to distinguish different pathological processes and exposure to chemical compounds. Hollow fiber based liquid-phase microextraction (HF-LPME) is a technique that combines sample cleansing, extraction and the concentration of analytes, where a hydrophobic porous capillary membrane is impregnated with an organic extraction solvent and the lumen is filled with microliters of a phase acceptor both organic by nature. The aim of this study was to develop a new method to extract bile acids from plasma through HF-LPME of two phases (octanol as the acceptor phase) using LCMS-IT-TOF. The optimized two-phased LPME procedure for the extraction of bile acids showed limits of detection 1.0 μg L(-1) and limits of quantification of 5.0 μg L(-1). The intra-assay precision ranged from 2.1 to 11.9%. The method developed was linear over the range of 5.0-200.0 μg L(-1) for all analytes. The hollow-fiber liquid-phase microextraction method was applied to human plasma from workers exposed to organic and halogenated solvents and also to unexposed volunteers. The method is simple, low cost and it does not require large amounts of organic solvents, therefore it is quite suitable for the analysis of bile acids exposed to hepatotoxic compounds.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol solution, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Ursodeoxycholic acid for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ammonium hydroxide solution, puriss., meets analytical specification of Ph. Eur., 25-30% NH3 basis
Sigma-Aldrich
Ammonium hydroxide solution, puriss., 30-33% NH3 in H2O
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ammonium hydroxide solution, puriss. p.a. plus, ≥25% NH3 in H2O
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ammonium hydroxide solution, puriss. p.a., reag. ISO, reag. Ph. Eur., ~25% NH3 basis
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%