Passa al contenuto
Merck
HomeApplicazioniChimica e sintesiMetodi di sintesiFunzionalizzazione di legami C–H

Funzionalizzazione di legami C–H

La funzionalizzazione del legame C–H è stata chiamata il Santo Graal della sintesi chimica organica1: negli ultimi anni, gli sforzi compiuti in chimica organica, in metallorganica e nei metodi catalitici hanno portato a significativi passi in avanti nella comprensione della reattività dei legami C–H e, in concomitanza, nello sviluppo di reazioni robuste proprio in virtù dei progressi registrati: i tempi sembrano quindi maturi per un impiego diffuso di queste tattiche nell’ambito dell’analisi retrosintetica.2-11 La trasformazione affidabile e dall’esito predicibile di un legame C–H in un legame C–C, C–N, C–O o C–X, condotta in maniera selettiva e controllata, è vantaggiosa in termini di riduzione dei passaggi di sintesi e dei sottoprodotti di scarto.   



Categorie in evidenza

3 flaconi di solventi di grado ReagentPlus® di diverso volume.
Solventi

Il vostro fornitore di solventi: scoprite la soluzione ideale tra i marchi Supelco®, SigmaAldrich® e SAFC® che comprendono tutto quello che serve per scopi analitici, di laboratorio e per la produzione biofarmaceutica. È possibile ordinare online.

Per acquistare
Building block eterociclici campione per la sintesi organica
Building block organici

Trovate i componenti di base necessari per far progredire la vostra ricerca nel nostro portafoglio di building block organici. Alcani, alcheni, alchini, alleni, areni e molto altro!

Per acquistare i prodotti
Building block eterociclici campione per la sintesi organica
Building block eterociclici

Il nostro portfolio completo di building block eterociclici è una delle più estese e diversificate collezioni di porzioni molecolari in uso in sintesi organica.

Per acquistare i prodotti
Sono rappresentate tre strutture chimiche in riquadri geometrici colorati. A sinistra, in un riquadro azzurro è rappresentata la struttura molecolare della 2-bromo-4-fluoropiridina con l'anello piridinico e i due sostituenti bromo (Br) e fluoro (F). Al centro, un riquadro giallo contiene la formula molecolare NH2CHF2 della 2,2-difluoroetilammina. Sulla destra, in un riquadro viola è rappresentato l'1,1,1-trifluoro-3-metil-2-butene-1-olo, con la sua struttura molecolare contenente più atomi di fluoro (F) e un gruppo alcolico (OH) attaccati a una catena di carbonio ramificata.
Building block fluorurati

Grazie ad un’ampia offerta di building block fluorurati, quali i sostituenti trifluorometile, difluorometile, triflato e pentafluorosolfanile pronti per la vostra “cassetta degli attrezzi”, rendiamo ancor più facile l’identificazione dei vostri composti target.

Per acquistare i prodotti

La disponibilità di nuovi metodi di attivazione dei legami C–H amplia il numero dei siti che, in una data molecola, possono essere interessati da funzionalizzazione, aumentando così le possibilità di trasformare la molecola di partenza in un prodotto più complesso. In più, tale disponibilità dà ai chimici organici di sintesi la possibilità di prendere di mira nuove tipologie di legami chimici, e di farlo, in particolare, con elevata chemioselettività. In combinazione con la tradizionale chimica dei gruppi funzionali, la funzionalizzazione dei legami C–H semplifica in modo apprezzabile la sintesi chimica di prodotti naturali complessi e di composti farmaceutici. Anche se i vantaggi insiti nelle logiche di funzionalizzazione dei legami C–H sono ormai ben evidenti,12 ancora oggi molti sono, in chimica organica, i percorsi di studio non al passo con le novità introdotte da questo approccio; ulteriori informazioni sono disponibili nella nostra Guida alla funzionalizzazione dei legami C-H.

Ricerca di documentazione
Cercate informazioni più specifiche?

Fate una ricerca tra i numerosi documenti disponibili: schede tecniche, certificati e documentazione tecnica.

Per leggere i documenti



Riferimenti bibliografici

1.
Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. 1995. Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc. Chem. Res.. 28(3):154-162. https://doi.org/10.1021/ar00051a009
2.
He J, Wasa M, Chan KSL, Shao Q, Yu J. 2017. Palladium-Catalyzed Transformations of Alkyl C?H Bonds. Chem. Rev.. 117(13):8754-8786. https://doi.org/10.1021/acs.chemrev.6b00622
3.
Wang D, Weinstein AB, White PB, Stahl SS. 2018. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev.. 118(5):2636-2679. https://doi.org/10.1021/acs.chemrev.7b00334
4.
Davies HML, Morton D. 2016. Recent Advances in C?H Functionalization. J. Org. Chem.. 81(2):343-350. https://doi.org/10.1021/acs.joc.5b02818
5.
Upp DM, Lewis JC. 2017. Selective C?H bond functionalization using repurposed or artificial metalloenzymes. Current Opinion in Chemical Biology. 3748-55. https://doi.org/10.1016/j.cbpa.2016.12.027
6.
Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.. 45(3):546-576. https://doi.org/10.1039/c5cs00628g
7.
Yamaguchi J, Yamaguchi AD, Itami K. 2012. C?H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed.. 51(36):8960-9009. https://doi.org/10.1002/anie.201201666
8.
Lyons TW, Sanford MS. 2010. Palladium-Catalyzed Ligand-Directed C?H Functionalization Reactions. Chem. Rev.. 110(2):1147-1169. https://doi.org/10.1021/cr900184e
9.
Wencel-Delord J, Dröge T, Liu F, Glorius F. 2011. Towards mild metal-catalyzed C?H bond activation. Chem. Soc. Rev.. 40(9):4740. https://doi.org/10.1039/c1cs15083a
10.
Arockiam PB, Bruneau C, Dixneuf PH. 2012. Ruthenium(II)-Catalyzed C?H Bond Activation and Functionalization. Chem. Rev.. 112(11):5879-5918. https://doi.org/10.1021/cr300153j
11.
Engle KM, Mei T, Wasa M, Yu J. 2012. Weak Coordination as a Powerful Means for Developing Broadly Useful C?H Functionalization Reactions. Acc. Chem. Res.. 45(6):788-802. https://doi.org/10.1021/ar200185g
12.
Gutekunst WR, Baran PS. 2011. C?H functionalization logic in total synthesis. Chem. Soc. Rev.. 40(4):1976. https://doi.org/10.1039/c0cs00182a
Autenticati per continuare

Per continuare a leggere, autenticati o crea un account.

Non hai un Account?