- Aromatic Nonpolar Nucleosides as Hydrophobic Isosteres of Pyrimidine and Purine Nucleosides.
Aromatic Nonpolar Nucleosides as Hydrophobic Isosteres of Pyrimidine and Purine Nucleosides.
Described are the design, synthesis, and structures of three nonpolar nucleoside isosteres to be used as probes of noncovalent bonding in DNA and as isosteric replacements for the natural nucleosides in designed nucleic acid structures. Reaction of substituted aryl Grignards with 3',5'-bis-O-toluoyl-α-deoxyibofuranosyl chloride and subsequent deprotection with sodium methoxide in methanol afforded the two β-C-nucleoside pyrimidine analogs 1 and 2. The dimethylindolyl nucleoside 3, a purine isostere, was obtained by a nucleophilic displacement on α-chlorodeoxyribofuranose by the sodium salt of 4,6-dimethylindole, followed by deprotection. Regio- and stereochemistry of the products were established with NOE difference spectra and (1)H NMR splitting patterns. Analogs 1 and 2 are nonpolar isosteres of thymidine, and nucleoside 3 is an isostere of 2-aminodeoxyadenosine, the triply-bonded Watson-Crick partner of thymidine. Semiempirical AM1 calculations were carried out to provide bond length information to assess structural similarities between the isosteres and their natural counterparts.