Skip to Content
Merck
  • Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing.

Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing.

Nature communications (2015-03-31)
Rozanne Arulanandam, Cory Batenchuk, Oliver Varette, Chadi Zakaria, Vanessa Garcia, Nicole E Forbes, Colin Davis, Ramya Krishnan, Raunak Karmacharya, Julie Cox, Anisha Sinha, Andrew Babawy, Katherine Waite, Erica Weinstein, Theresa Falls, Andrew Chen, Jeff Hamill, Naomi De Silva, David P Conrad, Harold Atkins, Kenneth Garson, Carolina Ilkow, Mads Kærn, Barbara Vanderhyden, Nahum Sonenberg, Tommy Alain, Fabrice Le Boeuf, John C Bell, Jean-Simon Diallo
ABSTRACT

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.

MATERIALS
Product Number
Brand
Product Description

SAFC
HEPES
Paclitaxel semi-synthetic for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, NMR reference standard
SAFC
Sodium chloride solution, 5 M
Albendazole, European Pharmacopoeia (EP) Reference Standard
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Supelco
Cycloheximide, PESTANAL®, analytical standard
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ammonium chloride, Pharmaceutical Secondary Standard; Certified Reference Material