Skip to Content
Merck
  • The influence of linker length on the properties of cathepsin S cleavable (177)Lu-labeled HPMA copolymers for pancreatic cancer imaging.

The influence of linker length on the properties of cathepsin S cleavable (177)Lu-labeled HPMA copolymers for pancreatic cancer imaging.

Biomaterials (2014-04-24)
Wen Shi, Sunny M Ogbomo, Nilesh K Wagh, Zhengyuan Zhou, Yinnong Jia, Susan K Brusnahan, Jered C Garrison
ABSTRACT

N-(2-hydroxypropyl)-methacrylamide (HPMA) copolymers have shown promise for application in the detection and staging of cancer. However, non-target accumulation, particularly in the liver and spleen, hinders the detection of resident or nearby metastatic lesions thereby decreasing diagnostic effectiveness. Our laboratory has pursued the development of cathepsin S susceptible linkers (CSLs) to reduce the non-target accumulation of diagnostic/radiotherapeutic HPMA copolymers. In this study, we ascertain if the length of the linking group impacts the cleavage and clearance kinetics, relative to each other and a non-cleavable control, due to a reduction in steric inhibition. Three different CSLs with linking groups of various lengths (0, 6 and 13 atoms) were conjugated to HPMA copolymers. In vitro cleavage studies revealed that the longest linking group (13 atoms) led to more rapid cleavage when challenged with cathepsin S. The CSL incorporated HPMA copolymers demonstrated significantly higher levels of excretion and a significant decrease in long-term hepatic and splenic retention relative to the non-cleavable control. Contrary to in vitro observations, the length of the linking group did not substantially impact the non-target in vivo clearance. In the case of HPAC tumor retention, the CSL with the null (0 atom) linker demonstrated significantly higher levels of retention relative to the other CSLs. Given these results, we find that the length of the linking group of the CSLs did not substantially impact non-target clearance, but did influence tumor retention. Overall, these results demonstrate that the CSLs can substantially improve the non-target clearance of HPMA copolymers thereby enhancing clinical potential.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, suitable for luminescence, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, BioUltra, ≥98.0% (T), pellets
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Methanol
Supelco
Ethylene glycol solution, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, 10 M in H2O
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Supelco
2-Mercaptoethanol, LiChropur, ≥99.0% (GC)